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An analytical solution of the thermal conductivity problem with boundary condi- 
tions of the third kind and arbitrary coordinate and time dependence of the Blot 
number is found in the form of a converging series of quadratures. 

At the present time, much attention is being given to methods for solution of thermal 
conductivity problems with boundary conditions of the third kind and heat-liberation coef- 
ficient (Biot number) which varies over the surface and with time. A number of studies [1-6] 
have been dedicated to this question. However, those authors considered either stationary 
regimes with heat liberation dependent only on coordinates [1-3], or nonstationary regimes 
with heat-liberation coefficient dependent solely on time [4-6]. 

In practice, problems are often found where in calculating transitional temperature 
fields one must consider not only nonuniformity of the heat-liberation coefficient over the 
surface, but also time dependence of this quantity. Among such problems are calculation of 
nonstationary temperature fields with a local heat-liberation crisis, pulsations in the heat- 
liberation coefficient, accidental disruption of the heat-liberation process in the active 
zone of a reactor, etc. 

The method to be presented in this study permits solution of the thermal conductivity 
problem with arbitrary space-time dependence of the heat-liberation coefficient (Blot number). 
The principle of the method, consisting of representing the desired solution in the form of 
a superposition of solutions for constant Biot number, was used previously in [i] to solve a 
stationary thermal conductivity problem. 

We will consider an infinite heat-llberating plate, whose nonstationary dimensionless 
temperature field is described by the thermal conductivity equation in cylindrical coordinates 

aO 1 a@ a2o a2o 
- - =  Q(p, z, Fo), (I) a Fo p 8p ap 2 a~ 

with initial condition 

symmetry condition 

o(~,  z, Fo)}Fo= o = Oo iV, z), (2) 

ao - = o  
(3) ap p=o 

and boundary conditions of the third kind on the surfaces z = 0 and z = 1 for Fo > 0: 

( O0'--Bi~(P' F~ - - O ' O z  z=o (4) 

(~z O q- Bio20)z=1 =0, (5) 

where 

Bi, (p, Fo) = { Bio,,Bi~ (p, PF~ a; p ~ a; (6) 
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Biol, Bio2 are constants; Bit(0 , Fo) is an arbitrary function of p and Fo. We represent the 
unknown O(p, z, Fo) in the form 

@(p, z, Fo)= 0o(9, z, Fo)+ 3(p, z, Fo), (7) 

where @o(0, z, Fo) is a solution of the nonstationary boundary problem Eqs. (i)-(6) for con- 
stant Blot numbers: 

Bit (9, Fo) ~ Blot = consti, Bio2 = const2,  

while ~(0, z) Fo) is a "perturbation" of the temperature field 0o(0, z, Fo) produced by the 
variation of the Blot number, and described by the following boundary problem: 

0 F----o- --  A@ = 0, (8) 

[Fo=o = o, (9 )  

0 0  0 =0  oo = o, ( l o )  

( O~)Oz Bio~O)~:o = (Bil(9, Fo)-- Bio0 (0o + 6-)~=o, (11) 

(z2) ( ~ 0 0  -1- Bio20)~=l = O. 

Determination of the function @o(0, z, Fo) is not difficult, so we will assume it to be 
known, and seek a solution of Eqs. (8)-(12) in the form 

oo 

z, Vo)=  z, Vo/, (13) 
i = l  

where 0i(p, z, Fo) satisfies the boundary problem Eqs. (8)-(12) with boundary conditions on 
the surface z = 0 of the form 

( O0~Oz Bio~)z=o =(Bii(9, Fo)--Biol)O~_lz=o(for i =  10o~0o) .  (14) 

It is obvious that in the case of convergence (i.e., when the limit lim ~i = 0 is satisfied) 

series (13) also satisfies condition (ii), i.e., is the desired solution. We will return to 
the question of convergences later, assuming meanwhile that series (13) does converge. We 
write 0i(p, z, Fo) in the form 

3 

Oi (9, z, Fo )=  ~ Ui,i(9, z, Fo), 
/ '=I 

where Ui, i is a solution of the Laplace equation AUi, x = 0, satisfying the inhomogeneous 
boundary condition 

OUi,l BiolUi, 1 = (Bii (9, Fo) - -  Bio0 ; 
Oz z=O 

Ui,a is the solution of the homogeneous thermal conductivity equation 

OUi.2 AUi,2 = 0 
0Fo 

for nonzero initial condition Ui,21Fo=o = --Ui,11Fo=o; Ui,3 is the solution of the inhomogen- 
eous thermal conductivity equation 

OUi,a AU~,a OUi,l 
OFo OFo 

with zero initial condition Ui,a[Fo=o = 0. 

Moreover, the functions Ui, j must satisfy the conditions 
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( OU~'i ] aU~i I 0---7 + Bio~ULi = O, /z=~ Op o=o 
= 0 .  

Omitting intermediate expressions for Ui,j, which present no difficulty in determination 
(e.g., by the method of separation of variables), we finally write 

Fo a 

OL (P, z, Fo) = ] ,I (Bio~ - -  Bit (p', Fo')) g,_, (9', z, Fo') L=o ~ (p' 9', z, Fo, Fo') dp'd Fo', (15) 
0 0 

where 

G (p, p', z, Fo. Fo') = do (~P) do (~P') Zp' P~..nZ,~ (z) exp ((~z + p~) (Fo' -- Fo)) d~.; 
0 n=  1 

Biox+ 2 1 + 2~exp~ p,~ + Bill + Bio2S~ 

• [(Bio~ + Bio2)(1 + exp (2~)) ~ + 

Z~ (z) = cos (p,~z) + ._Biot sin (p,~z); 
,Ltn 

] sin - -  (Bioi + Bio~) cos 

(~2 + Bio~Bio2)(exp (2~) - -  1)1-~}; 

2 Bill S~ = la~ + . 
2 p~ + Bi~2 

and ~n are the roots of the transcendental equation 

tg p,~ = p.  (Biot + Bio2) 
2 BioiBio2 

Thus, the solution of Eqs. (8)-(12) for the temperature perturbation produced by varia- 
tion of the Biot number can be expressed in the form of series (13), the terms of which are 
defined by Eq. (15). It is clear that the convergence of this series depends on Bio~, Bioa, 
a, and the form of the function Bix(p, Fo), and must be considered individually in each con- 
crete case. 

However, it is simple to prove that upon fulfillment of the condition Biox~Bi,(p, Fo) 
series (13) converges unconditionally. In fact, 8i(p, z, Fo) described by Eqs. (8)-(12) 
with boundary condition (14) has the sense of the temperature produced by surface heat 
sources with density (Bio, -- Bix(p, Fo))Oi-1(p , z, Fo)[z=o. It is obvious that with increas- 
ing source density, duration of action, and increase in surface area encompassed by these 
sources, the temperature will also rise. 

Thus, we may write 

Oi (P, z, Fo) < ~i (z) .< ~ax___ ~i (Z = 0), (16) 

where  ~ i ( z )  i s  n o t h i n g  b u t  t h e  o n e - d i m e n s i o n a l  s t a t i o n a r y  t e m p e r a t u r e  f i e l d  p roduced  by a c t i o n  
of  s u r f a c e  s o u r c e s  w i t h  z = 0 and d e n s i t y  (B io ,  -- B i ~ m i n ) ~ i - t  max ( i  = 1, 2,  3 ,  . . . ) ;  Bi~ mtn 
i s  t he  minimum v a l u e  of  the  f u n c t i o n  B i t ( p ,  Fo) ( O < p  < a ,  O ~ F o  < - ) ;  ~o  max ~ eo max i s  the  
maximum value of the function Oo(0, z, Fo)[z=o (0~p~ a, 0~Fo < -). 

From solution of the corresponding problem for ~i(z) one easily finds that 

~ _ (Biol--Bi~ j~)(l+Bio~) < 1 .  
max ( Bio2 / 

~i-1 Bioi 1 + Bioz -}- Bioi / 

Then, according to D'Alembert's principle t h e  positive-sign numerical series ~max i con- 
i=i 

verges so that the functional series ~i O~(p, z, Fo) for which the numerical series 
i =  i = l  

is the major also converges in view of Eq. (16). We note that series (13) can always be 
made unconditionally convergent by using for Biol in the solution for 8o(p, z, Fo) the maximum 
value of the function Bix(p, Fo) (0 ~p < -, Fo < -). 

It should be noted that the approach used in solving this problem can be applied to deter- 
mination of nonstationary temperature fields produced by variation of the Blot number over 
coordinate and time in bodies of any form. 
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NOTATION 

p, z, dimensionless coordinates; % dimensionless temperature; Q, dimensionless volume 
heat-liberation density per unit time; Fo = • ~, Fourier number; Bi:(p, Fo) = ~(p, Fo)- 
6/k, Blot number;• , thermal diffusivity coefficient; 6, plate thickness; T, time; ~(P, Fo), 
heat-liberation coefficient; k, thermal conductivity coefficient; i, summation index; Jo, 
zero order Bessel function of the first kind. 
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HEAT TRANSFER OF A SEMITRANSPARENT PLATE UNDER CONDITIONS OF 

A REGULAR REGIME OF THE SECOND KIND 

I. A. Gorban' and Yu. V. Lipovtsev UDC 536.33:536.241 

The kinetics of the cooling of a plane semitransparent layer under conditions of 
a regular regime of the second kind is analyzed. 

Heating and cooling of optical blanks made of glass and ceramics quite often are carried 
out under conditions of linearly varying ambient temperature. In this case the calculation 
of the rate of cooling and the temperature drops in the glass, in practice, is carried out 
according to empirical relations [i, 2] or according to dependencies of a regular regime of 
the second kind [3]. Moreover, it is known that at sufficiently high temperatures in glass 
and diathermic ceramics, bulk self-radiation of the material develops, and use of the ordinary 
Fourier equation is not very effective here. The features of the heating of a semitransparent 
layer under conditions of a regular regime of the first kind were investigated in [4]. 

Study [5] is the only work in which an analysis is given of the features of a regular 
regime of the second kind in semitransparent materials on the basis of the exact equations of 
radiant-conductive heat exchange. However, we should note that an analysis was performed for 
a narrow range of parameters of the regime and at low temperatures, when the radiant component 
of heat exchange appeared weak. Therefore, the conclusion of the authors concerning the exis- 
tence of a regular regime of the second kind in semitransparent materials, analogous to the 
situation in the classical theory of heat conduction, has little substantiation. 

The present study is devoted to a theoretical study of the features of the unsteady 
process of radiation--conduction heat exchange under conditions of a regular regime of the 
second kind, when the radiation component makes a noticeable contribution to the value of the 
total heat flux. 

We consider the problem in the following formulation. A plate of glass of thickness 2d 
with optically smooth surfaces, the transfer of heat within which occurs simultaneously by 
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